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ABSTRACT

Beta-adrenergic receptor concentration and adenylate

cyclase activity were determined on resident (R-MO),

thioqlycollate-stimulated (TG-M4) and Bacillus Calmette Guerin-

activated (BCG-MO) rat peritoneal macrophages. Beta-adrenergic

receptor concentration as determined by La---iodocyanopindolol

binding was: R-MO 2136±143, TG-MO 2110±327, and for BCG-M

808±190 sites/cell (mean ± SEM; p<O.01, ANOVA BCG-MO< R-MO and

TG-M0). NaF-stimulated adenylate cyclase activity was: R-M0

35.4±6.6, TG-MO 72.7±13.7, and for BCG-M0 32.4±11.9 picomoles

cAMP/mg protein/min (mean±SD; p <0.01, ANOVA, TG-MO>R-Mo and BCG-

Mq), while isoproterenol-stimulated activity was: 16.0±1.8,

31.2±3.8, 15.0±1.3, respectively (mean t SD, p<0.05, ANOVA TG-MO

>R-M0 and BCG-MO). These data suggest that beta-adrenergic

receptors and adenylate cyclase activity are differentially and

seperatelU regulated during macrophage activation. Adenylate

cyclase activity is rate limiting, since resident and BCG cells

reflect equal isoproterenol-stimulated activity in the face of

different receptor concentrations. The data also demonstrate

that TG cells are the most responsive to beta-adrenergic

stimulation.
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INTRODUCTION

Previous studies have demonstrated that catecholamines

influence macrophage function. Incubation of macrophages with

adrenergic agents results in increased production of cyclic AMP

(cAMP) (1-5). Elevated levels of intracellular cAMP are

associated with decreased phagocytosis of Trgpanosoma cruzi (6)

and IgG-coated erythrocytes (7,B) by mouse macrophages.

Alterations in cAMP concentrations influence the macrophage

response to chemotactic (9,10) and migration inhibitory factors

(11). Macrophage secretion of elastase (12) and collagenase (13)

are enhanced by increasing concentrations of cAMP. In further

support of the influence of catecholamines on macrophage

function, the beta-adrenergic receptor of the rat peritoneal

bacillus Calmette Guerin-activated macrophage was characterized

(14). Stimulation of this receptor with metaproterenol resulted

in a dose-dependent decrease in the net phagocytosis of soluble,

model immune complexes by these macrophages (14). The present

studies were undertaken to further investigate the role of

catecholamine-mediated regulation of macrophage function during

macrophage activation. Beta-adrenergic receptor expression and

adenylate cgclase activity were compared in resident,

thioglycollate-stimulated and bacillus Calmette Guerin activated

rat peritoneal macrophages.

MATERIALS AND METHODS

The following reagents were purchased from the

manutacturer: HBSS with and without calcium and magnesium
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(Gibco, Grand Island, NY), Percoll (Pharmacia Fine Chemicals,

Piscataway, NJ), BSA (Miles Laboratories Inc., Elkhart, ID),

bacillus Calmette Guerin (BCG3 ) vaccine (Glaxo Operations, UK,

Ltd., Greenford, England), GF/C filters (Whatman, Clifton, NJ),

C'02 I3iodocyanopindolol, specific activity 2200 Ci/mmole, and

radioimmunoassay kits to measure cAMP (New England Nuclear Corp.,

Boston, MA), thioglycollate (TG) (Becton Dickinson, Cockeyville,

NJ).

Isolation of peritoneal macrophages: Sprague-Dawley rats

(200 gm) were purchased from Hilltop Laboratories (Scottdale,

PA). Peritoneal macrophages (Ms) were isolated by peritoneal

lavage with HBSS lacking divalent cations containing 100 mg/i

EDTA (15) after no pre-treatment (resident (R) cells), 3 days

following intraperitoneal injection of 3 ml of 3% thioglycollate

(TG cells) and 7 days following intraperitoneal injection of 1

vial (8 X 106 viable organisms) of BCG (BCG cells). Cells were

sedimented by centrifugation (200 X q for 10 min), resuspended at

1 to 2 X 107 cells/ml in fresh buffer, layered onto a preformed

continuous Percoll gradient, and centrifuged at 2,200 X g for 15

min a 41C (16, 17). Gradients were generated by centrifugation

(26,000 X g, 49C, 30 min.) of a 50% mixture of Percoll and HBSS

lacking divalent cations. The macrophage layer was harvested

with a pipet, and the cells were washed free of Percoll with

excess buffer. Cells were resuspended in the desired buffer as

described below. Cell counts were performed using a model ZF

Coulter Counter (Coulter Electronics, Miami, FL). Macrophage

5



purity was monitored by staining for non-specific esterase (18).

Cell viability was monitored by trUpan blue exclusion prior to

and at the end of study. By these criteria >e5% of the cells were

viable macrophages.

Catecholamine binding studies and adenylate cyclase

activity: These studies were performed by previously published

methods in which lymphocytes were studied (19-21) and for

characterization of the macrophage beta-adrenergic receptor (14).

Membranes were prepared by hypotonic lysis of macrophages as

previously described (14).

Binding assays: f-adrenergic receptors were quantified by

Scatchard analysis of[C 401iodocyanopindolol ("OI-ICYP) binding.

Membranes derived from 106 macrophages and IaOI-ICYP (5 to 200

pM) were incubated with and without 1 PM propranolol for 90 min.

at 376C in a total volume of 250 PI of assay buffer described

above. Nonspecific binding determined in the presence of 1 PM

propranolol was 50% of total " I-ICYP binding. Bound was

separated from free ligand by vacuum filtration on GF/C disc

Adenylate cyclase: Membranes derived from 106 macrophages

were incubated in a total volume of 150 Pl of 50 mM HEPES (pH

7.4), 8 mM KC1, 6 mM MgCl, 1 mM ATP, 2.5 mM creatine phosphate,

0.075 mg/ml creatine phosphokinase, and 0.4 mg/ml BSA for 15 min

at 370C. Assays contained either 10 mM NaF, 10- * M GTP, or 10- *

M GTP plus 10- 0 to 10- * M isoproterenol as stimulants. cAMP was

quantified by radioimmunoassay (New England Nuclear Corp.,

Boston, MA.)
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Statistical analysis: Multiple groups were compared by one

way analysis of variance with subgroup testing by contrast.

Scatchard curves were generated from linear regression using

least squares.

RESULTS

Characteristics of the peritoneal macrophages: The Wields

and staining characteristics at each of the types of macrophages

are summarized in Table I. Cell yield varied with level of

activationg but macrophage purity, as determined by staining for

non-specific esterase, was similar in the three groups.

Quantification of the beta-adrenergic receptor: Scatchard

analysis of specific binding of "AOI-ICYP to macrophages yielded

a straight line consistent with a single class of antagonist

binding sitem. The results of the receptor numbers per cell are

summarized in Table II. Resident and TG cells had similar numbers

of beta-adrenergic receptors with both having greater than twice

the number for BCG cells.

Adenylate cyclase activity: The results of adenylate

cyclase activity for each of the macrophage groups are summarized

in Table III. Both NaF- and isoproterenol-stimulated adenylate

cyclase activities were similar in resident and BCG cells. TG

cells had twice the activity of the other cells in response to

both stimulants. The concentration of isoproterenol for half-

maximal stimulation of adenylate cyclase was similar in the three

cell tupes.
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DISCUSSION

Previous studies from this laboratory have demonstrated and

characterized the 0-adrenergic receptor on BCG-activated rat

peritoneal macrophages (14). The BC-M0 was initially chosen

over R-Mo because of the high yield of cells that could be

obtained from BCG-injected rats. It was expected that the higher

yield of cells would facilitate the initial characterization of

the receptor. The present studies demonstrate that 0-adrenergic

receptor expression is modulated with activation of the

macrophage. The 50% fall in receptor concentration in the BCG-

activated cell was unexpected.

Activation of macrophages has previously been demonstrated

to be associated with modulation of expression of other cell

surface proteins (22-24) and stimulation or suppression of

various macrophage functions (25-27). Although expression of the

insulin receptor on activated lymphocytes has been shown to be

modulated (28), this is the first report of similar modulation of

expression of receptors for classical hormones on the macrophage.

Stimulation of macrophages by peritoneal injection of

thiogylcollate was associated with no significant change in the

density of receptors as compared to resident peritoneal

macrophages; however, there was a significant rise in adenylate

cyclase activity in TG-M0. The concomitant increase in

isoproterenol stimulated activity suggests that the P-adrenergic

receptor and adenUlate cyclase remain coupled. In BCG-M!,

receptor concentration was about half of that in R-M and TG-Ml;
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however, adenylate cyclase activity in BCG-MO was similar to that

of resident peritoneal cells. Taken together, the data in these

three cell types indicate that O-adrenergic receptor

concentration and adenylate cyclase activity are independently

regulated during MO activation. The higher level of cAMP

generation with isoproterenol treatment in TG-M0 as compared to

R-MO, cells with equal P-adrenergic receptor concentrations, and

the equal isoproterenol response between R-MP and BCG-M9, where

receptor numbers are altered, indicate that adenylate cyclase

activity is rate limiting for catecholamine action in these

cells.

Previous studies from this (14) and other laboratories (6)

have shown that catecholamine stimulation of and elevated cAMP

levels in MO are associated with significant impairment of

phagocytosis. Phagocytic activity is modulated during macrophage

activation (29) and TG-M0 are phagocytically more active than are

R- and BCG-MO (30). Demonstration in the present studies that

TG-MO are the most responsive to catecholamines suggests that

catecholamines may have a more pronounced effect on phagocytosis

when MO are specifically activated to perform this function.

Phagocytosis of soluble immune complexes by macrophages is

a complex process that includes binding to the MO surface via Fc,

C3b or Clq receptors (31), internalization of bound ligand, and

intracellular degradation in lysosomes. The influence of changes

in catecholamine responsiveness during macrophage activation on

each of the steps of phagocytosis still needs to be defined.
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These experiments are currently in progress.
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TABLE 1. Macrophage characteristics

R-MIS TG-M0' BCG-M)6 p value

Ti 87 7

Coll Uiold 1.66±0.22 4.98±0.23 2.39±0.10 <0.01

per a nimal,

(X 107)

Nonspecific esterase (% positive)

84.8±2.0 85.4±1.0 85.6±2.4 N.S.

% viable > 95 > 95 > 95

The results represent the group mean I S 0, n represents the

number of animals studied.
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TABLE II. P-adrenergic receptors on rat peritoneal macrophages.

n Receptor

sitos/cell

R-Mg 7 2136 ± 143

TG-PI4 6 2110 ± 327

BCG-M# 6 808 ± 190

The results represent the group mean ± I SEM, p< 0.01, analysis

of variance, for BCG-M0 compared to R-Mq and TG-M .
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TABLE III. Rat macrophage membrane adenylate cgclase activity

Stimulant Activity

R-MO TG-M$ BCG-M

(pmoles cAMP/min/mq membrane protein)

NaF 35.41±6.55 (8) 72.71±13.74 (4) 32.36±11.93 (7)

Isoproterenol 15.96±1.79 (4) 31.17±3.82 (4) 15.04±1.25 (3)+

co - M)

(half-maximal stimulation x 10 - 7 M)

Isoproterenol 6.90±6.11 (4) 5.11±2.21 (4) 9.42±7.49 (3)

Iso = isoproterenol. Values for basal cAMP and in the presence of

GTP were subtracted from values obtained for the other conditions

to determine the specific adenUlate cyclase activity for NaF and

isoproterenol stimulation. The results are expressed as the

group mean ± I SD of results obtained from indivicdtal experiments

(n).

* p < 0.01, analysis of variance, TG-M > R-MO and BCG-MO.

+ p < 0.05, analysis of variance, TG-MO > R-MO and BCG-Md.
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I. INTRODUCTION

Fc-receptor-mediated phagocytosis of soluble immune complexes and antibody-coated
bacteria are important functions of macrophages. Phagocytosis of antigens by
macrophages plays a role in antigen clearance, as well as antigen processing for
presentation to lymphocytes which initiates cell-mediated and humoral immune responses.
The purpose of this project is to study catecholamine-mediated alterations in
macrophage phagocytic function.

II. PROGRESS REPORT

1. Reculation of beta-adrenergic receptor expression and adenylate
cvclase activity during macrophage activation.

Beta-adrenergic receptor concentration and adenylate cyclase activity were determined
on resident (R-M0), thioglycollate-stimulated (TG-M0) and Bacillus Calmette Guerin-
activated (BCG-MO2 Eat peritoneal macrophages. Beta-adrenergic receptor concentration
as determined by- . I-iodocyanopindolol binding was: R-M0, 2136 ± 143; TG-M0, 2110 +
327, and for BCG-M0, 808 + 190 sites/cell (mean ± SEM; p<0.01, ANOVA BCG-MO< R-M0 and
TG-MO). NaF-stimulated adenylate cyclase activity wa§: R-M0, 35.4 + 6.6; TG-M0, 72.7
± 13.7, and for BCG-MO, 32.4 + 11.9 picomoles cAMP/lO cells/min (mean ± SD; p <0.01
ANOVA, TG-M0>R-M0 and BCG-MO), while isoproterenol-stimulated activity was: 16.0 +
1.8, 31.2 + 3.8, 15.0 + 1.3, respectively (mean + SD, p<0.05, ANOVA TG-MO>R-M0 and
BCG-M0). These data suggest that beta-adrenergic receptors and adenylate cyclase
activity are differentially and separately regulated during macrophage activation.
Adenylate cyclase activity is rate limiting, since resident and BCG cells reflect equal
isoproterenol-stimulated activity in the face of different receptor concentrations.
The data also demonstrate that TG cells are the most responsive to beta-adrenergic
stimulation.

The manuscript describing these studies is attached.

2. Catecholamine-mediated regulation of Fc-receptor concentration
and Dhagoctic activity of rat peritoneal macrophages.

The influence of catecholamines on Fc receptor (FcR) concentration was measured at
various stages of macrophage activation. Resident TG-stimulated and BCG-activated
peritoneal M0 were harvested and incubated with radiolabeled heat aggregated rat IgG
(ARG). FcR concentration was determined by Scatchard analysis of binding data. As the
model immune complexes contain multiple Fc regions per aggregate and thus can
participate in multi-site attachment, these measures of FcR concentration are only
meaningful as a relative, but not an absolute measure of the changes in FcR
concentration that are associated with metaproterenol treatment.



EFFECT OF METAPROTERENOL ON NO FcR DENSITY

Metaproterenol (M)

0 1O-8 10- 6  1O-4

Macrophages (n)

Resident 3 24.9 28.7 35.4 42.9

TG 3 43.1 54.9 69.3 97.7

BCG 3 12.5 15.1 16.8 18.1

FcR density is expressed as sites (x 103)/cell. These results demonstrate that FcR
density on TG-MO>Resident-MO>BCG-MO. In each case, there is a dose-dependent increase
in FcR density with the addition of metaproterenol. BCG-MO appear to be less
responsive to metaproterenol than resident or TG-MO, with TG-MO being the most
responsive. Changes in FcR density were not altered by the addition of cycloheximidc
(2 ug/ml), suggesting that the effect of metaproterenol does not require new protein
synthesis. Prostaglandin E2 is released from MO following phagocytosis of immune
complexes and like metaproterenol it activates adenylate cyclase. Binding studies were
performed at 40 C after pre-treatment with metaproterenol at 370 C, thus it is unlikely
that internalization of bound material led to release of prostaglandins. However, to
eliminate a possible role of prostglandin-mediated increase in cyclic AMP, cells were
pre-treated with indomethacin (lO M). Indometacin pre-treatment did not alter the
results observed with metaproterenol treatment. These studies indicate that
catecholamine treatment of Mo is associated with a dose-dependent increase in FcR
concentration.

The influence of catecholamines on FcR-mediated phagocytosis of model immune com lexes
was studied by incubation of R-MO, TG-MO and BCG-MO with radiolabeled ARG at 37U C and
measurement of binding, internalization and digestion of ARG. In resident (21 vs 13%)
and BCG (19 vs 11%) MO, lO- M metaproterenol induces a decrease in the total amount
of ARG digested over 2 hours of incubation. In contrast to these observations,
metaproterenol treatment of TG-MO is associated with no change in net digestion of ARG
(45 vs 43%). As metaproterenol treatment induces a doubling of the amount of ARG bound
to TG-M0 (as shown in the Table above), and a decrease in the fraction of bound ARG
that are internalized, there is no net change in the amount digested. In resident and
BCG-MO, the effect of metaproterenol to decrease the rate of internalization/digestion
of FcR-bound material is greater than its effect on binding; thus, the net effect is a
decrease in digestion. These observations demonstrate that catecholamines effect more
than one step of FcR-mediated phagocytosis. Additional studies are needed to further
define the influence of catecholamines on each step of phagocytosis and the major
subclasses of FcR for IgG.
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3. AlDha-adrenergic receptor expression on rat peritoneal
macroohages.

Studies described above demonstrated that rat peritoneal macrophages express beta-
adrenergic receptors. However, endogenous catecholamines function as both alpha- and
beta-adrenergic agonists. Thus, it seemed possible that should macrophages express
both alpha 2 - and beta-adrenergic receptors, catecholamine-mediated activation of both
receptors might produce complex and even opposite effects. Resident, TG-stimulated and
BCG-activated rat peritoneal macrophages were harvested and assayed for alpha-
adrenergic receptors using [3H]-yohimbine. The absence of specific binding of [3H]-
yohimbine to rat macrophages suggests that they do not express alpha 2 -adrenergic
receptors.

4. Beta-adreneraic receptor expression on mouse macrophaQe cell-
lines.

Previous studies have evaluated net FcR expression and net phagocytic function of rat
peritoneal macrophages. Yet, three major subclasses of FcR for IgG have been
characterized on human, mouse and rat macrophages. These FcR differ in their amino
acid sequence, ligand binding affinity, trypsin-sensitivity, activation of second
messengers, as well as activation of phagocytosis, enzyme release and other effects of
FcR-ligation. These characteristics of FcR have been most thoroughly evaluated using
mouse macrophage cell-lines. Monoclonal antibodies specific for two of the subclasses
of mouse FcR for IgG are available. Thus, utilization of these reagents provides the
opportunity to determine any FcR-subclass specific catecholamine-mediated effects on
FcR function.

Mouse macrophage-like cell lines (P388D and J744a) were grown in culture and assayed
for beta-adrenergic receptor expression using standard methods.

P388DI £Ils do not express beta-adrenergic receptors; however, J744a cells bind 98
fmole [ I]-iodocyanopindolol/per mg membrane protein. A macrophage (P388DI) that
expresses FcR and is phagocytically active but lacks beta-adrenergic receptors that
will provide a useful comparison for the J744a line which expresses both activities.
Hybridomas for monoclonal antibodies to FcR II and FcR III (2.4G2 and 3G8 respectively,
kindly provided by Dr. Jay Unkeless) are being cultured. The monoclonal antibodies
will be isolated and used to study catecholamine-mediated effects on each subclass of
FcR. Aggregated mouse IgG will be used as described above to assay phagocytic
activity. Thesp studies are in progress.


